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Countable Dense Homogeneous Spaces

A Hausdorff separable space X is countable dense
homogeneous (CDH) if every time D,E are countable dense
subsets there exists a homeomorphism h : X → X such
that h[D] = E.
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Countable Dense Homogeneous Spaces

A Hausdorff separable space X is countable dense
homogeneous (CDH) if every time D,E are countable dense
subsets there exists a homeomorphism h : X → X such
that h[D] = E.

That is, any two countable dense subsets of X are placed
“in the same way” inside X.

Examples:

the real line is CDH (use back and forth),

the rationals are NOT CDH (remove one point),

other spaces known to be CDH: Euclidean spaces, the
Cantor set, the Hilbert cube, Hilbert space...
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Separable Metrizable Spaces

Let us restrict to Separable Metrizable Spaces from now on.
So Euclidean spaces, the Cantor set, the Hilbert cube are
CDH.

Question (Fitzpatrick and Zhou). Is there a CDH metrizable space X

that is not completely metrizable?

It is not difficult to construct a CDH Bernstein set... using
some additional hypothesis like CH.

Question. For which 0-dimensional subsets X of R is ωX CDH?
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Some Answers

Theorem 1 [Hrušák and Zamora Áviles] Let X be a separable
metrizable space.
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Theorem 2 [Farah, Hrušák and Martinez-Ranero] There is a CDH set of
reals X of size ω1 that is a λ-set (all countable subsets are relative Gδ).

Countable Dense Homogeneous Filters – p. 4



Some Answers

Theorem 1 [Hrušák and Zamora Áviles] Let X be a separable
metrizable space.

(1) If X is CDH and Borel, then X is completely metrizable.

(2) If ωX is CDH, the X is a Baire space.

Theorem 2 [Farah, Hrušák and Martinez-Ranero] There is a CDH set of
reals X of size ω1 that is a λ-set (all countable subsets are relative Gδ).

Notice that by (2) in Theorem 1, it is not possible to extend
the result of Theorem 2.
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Medini and Milovich paper

The Cantor set ω2 can be identified to P(ω) using
characteristic functions.
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Our results

Is it really necessary to use MA(countable) in order to
construct a CDH filter?
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Our results

Is it really necessary to use MA(countable) in order to
construct a CDH filter? Not really!!

Theorem (Hernández-Gutiérrez and Hrušák) Let F ⊂ P(ω) be a filter
that extends the Fréchet filter. If F is a non-meager P -filter, then both F
and ωF are CDH.

Remark: It is not known that non-meager P -filters exist in
ZFC. However, their existence follows from cof [d]ω = d.
Thus, if all P -filters are meager, then there are inner models
with large cardinals.

Proposition. Any CDH filter must be non-meager.
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Proof of the Proposition

Proposition. Any CDH filter F must be non-meager.

Proof. The Frechet filter is not CDH because it is countable. If x ∈ F is
coinfinite, {y ∈ P(ω) : x ⊂ y} ⊂ F is a Cantor set. Let D be a
countable dense set of {y ∈ P(ω) : x ⊂ y} ⊂ F . If F is meager,
there exists a countable dense subset E of F that is a relative Gδ. No
homeomorphism takes D inside E.

Notice that in this proof we really found two different
countable dense subsets.
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From F to ωF

If F is a non-meager P -filter, then ωF is homeomorphic to

{A ⊂ ω × ω : ∀n < ω {x : (x, n) ∈ A} ∈ F},

that is also a non-meager P -filter. Thus, we only have to
prove the Theorem for F .
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The topological idea

Take a non-meager P -filter F and two countable dense
subsets D0, D1.
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The topological idea

Take a non-meager P -filter F and two countable dense
subsets D0, D1. We construct a sequence of partial
homeomorphisms hk : P(n(k)) → P(n(k)), where
{n(k) : k < ω} is an increasing sequence. Each hk+1 will
“extend” hk and the homeomorphism h : P(ω) → P(ω) is the
limit of the hk. Intuitively, in each step we decide what open
set goes where, depending on D0.

Lemma (Medini and Milovich). Let I be an ideal, D a countable dense
subset and h : P(ω) → P(ω) a homeomorphism. If there is a x ∈ I
such that d△ h(d) ⊂ x for all d ∈ D, then h[I] = I .

F is homeomorphic to its dual ideal I so we may use the
Lemma to obtain the homeomorphism we want. Thus, we
need to construct such an x.

Countable Dense Homogeneous Filters – p. 9



Forget about the topology

So we want to meet the conditions of the Lemma.

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while.

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed)

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed) , then there is
some e ∈ D1−i such that

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed) , then there is
some e ∈ D1−i such that d− x = e− x

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed) , then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses)

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed) , then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses) and e restricted to n ∩ x is as t

says

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

So we want to meet the conditions of the Lemma. Forget
about the condition x ∈ I for a while. Thus, we want the
following conditions

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed) , then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses) and e restricted to n ∩ x is as t

says (so e is in the open set given by t).

Countable Dense Homogeneous Filters – p. 10



Forget about the topology

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed), then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses) and e restricted to n ∩ x is as t

says (so e is in the open set given by t.)

Countable Dense Homogeneous Filters – p. 11



Forget about the topology

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed), then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses) and e restricted to n ∩ x is as t

says (so e is in the open set given by t.)

In this way, in the steps of the topological construction we
can make h(d) = e for some appropriate t (given by the
construction).
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(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed), then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses) and e restricted to n ∩ x is as t

says (so e is in the open set given by t.)

In this way, in the steps of the topological construction we
can make h(d) = e for some appropriate t (given by the
construction). It is easy to achieve these conditions with an
induction, construct such x by finite steps.
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Forget about the topology

(1) for all d ∈ D0 ∪D1, d ⊂∗ x (intuitively, d finitely misses x),

(2) if i ∈ {0, 1}, d ∈ Di and we have a partial function
t : n ∩ x → 2 for n < ω (that is, some basic open set that
is compatible with the x constructed), then there is
some e ∈ D1−i such that d− x = e− x (that is, d and e

have the same misses) and e restricted to n ∩ x is as t

says (so e is in the open set given by t.)

In this way, in the steps of the topological construction we
can make h(d) = e for some appropriate t (given by the
construction). It is easy to achieve these conditions with an
induction, construct such x by finite steps.

But what about x ∈ I? That’s the tricky part.
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How we constructed x ∈ I

At first, I did not believe Theorem 3
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How we constructed x ∈ I

At first, I did not believe Theorem 3 until I saw the following.

Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called a X -tree of
finite subsets if for each s ∈ T there is Xs ∈ X such that for
every a ∈ [Xs]

<ω we have s⌢a ∈ T .
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How we constructed x ∈ I

At first, I did not believe Theorem 3 until I saw the following.

Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called a X -tree of
finite subsets if for each s ∈ T there is Xs ∈ X such that for
every a ∈ [Xs]

<ω we have s⌢a ∈ T .

Lemma. Let F be a filter on P(ω) that extends the Fréchet filter. Then
F is a non-meager P -filter if and only if every F -tree of finite subsets
has a branch whose union is in F .
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How we constructed x ∈ I

At first, I did not believe Theorem 3 until I saw the following.

Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called a X -tree of
finite subsets if for each s ∈ T there is Xs ∈ X such that for
every a ∈ [Xs]

<ω we have s⌢a ∈ T .

Lemma. Let F be a filter on P(ω) that extends the Fréchet filter. Then
F is a non-meager P -filter if and only if every F -tree of finite subsets
has a branch whose union is in F .

This means that if we do our construction all the ways
possible, there will be some one of those that gives x ∈ I.
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How we constructed x ∈ I

At first, I did not believe Theorem 3 until I saw the following.

Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called a X -tree of
finite subsets if for each s ∈ T there is Xs ∈ X such that for
every a ∈ [Xs]

<ω we have s⌢a ∈ T .

Lemma. Let F be a filter on P(ω) that extends the Fréchet filter. Then
F is a non-meager P -filter if and only if every F -tree of finite subsets
has a branch whose union is in F .

This means that if we do our construction all the ways
possible, there will be some one of those that gives x ∈ I.
And we’re done!!
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Summary
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Summary

Any non-meager P -filter F is CDH and ωF is CDH.
(HG-H)
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It is consistent that there exist ultrafilters non P -filters
that are CDH. (M-M)
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Summary

Any non-meager P -filter F is CDH and ωF is CDH.
(HG-H)

It is consistent that there exist ultrafilters non P -filters
that are CDH. (M-M)

CDH filters are non-meager. (HG-H)

It is not known in ZFC if there are non-meager filters that
are CDH or non-CDH. (one of them should be true!!)
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Summary

Any non-meager P -filter F is CDH and ωF is CDH.
(HG-H)

It is consistent that there exist ultrafilters non P -filters
that are CDH. (M-M)

CDH filters are non-meager. (HG-H)

It is not known in ZFC if there are non-meager filters that
are CDH or non-CDH. (one of them should be true!!)

Thank you.
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